Progetto POLORISO – Incontro di coordinamento della attività scientifica del progetto CRA - Unità di Ricerca per la risicoltura Vercelli, 5 aprile 2013

Innovazione ed interventi avanzati per la filiera del riso italiano: innovazione varietale, qualità e ambiente

UO CRA-RIS, responsabile: Giampiero Valè

UO CRA-GPG, responsabile: Paolo Bagnaresi

Partecipanti:Luigi Cattivelli (CRA-GPG), Valeria Terzi (CRA-GPG), Gianni Tacconi (CRA-GPG), Luigi Orrù CRA-GPG), Alberto Gianinetti (CRA-GPG), Chiara Biselli (CRA-RIS), Sara Perrini (CRA-RIS), Simona Urso (CRA-GPG), Daniela Cavalluzzo (CRA-RIS), Gabriele Orasen (CRA-RIS)

Obiettivi previsti dalla scheda di ricerca per il 2012

WP1, Genetica, genomica ed innovazione varietale

- Attività 1: Caratterizzazione molecolare delle varietà di riso italiano: Carnaroli, Arborio, Vialone nano, Volano, Balilla, Gigante Vercelli tramite sequenziamento con strumento Illumina Genome analyzer GAIIx;
- Attività 2: Inizio della analisi bioinformatica dei dati di sequenza;
- Attività 4: realizzazione di incroci tra varietà nazionali ed ottenimento, tramite SSD, di 4 popolazioni sperimentali di tipo RIL segreganti per diversi caratteri;
- Attività 5: Introgressione di geni di resistenza a *Pyricularia grisea* in linee/varietà suscettibili tramite selezione assistita da marcatori molecolari

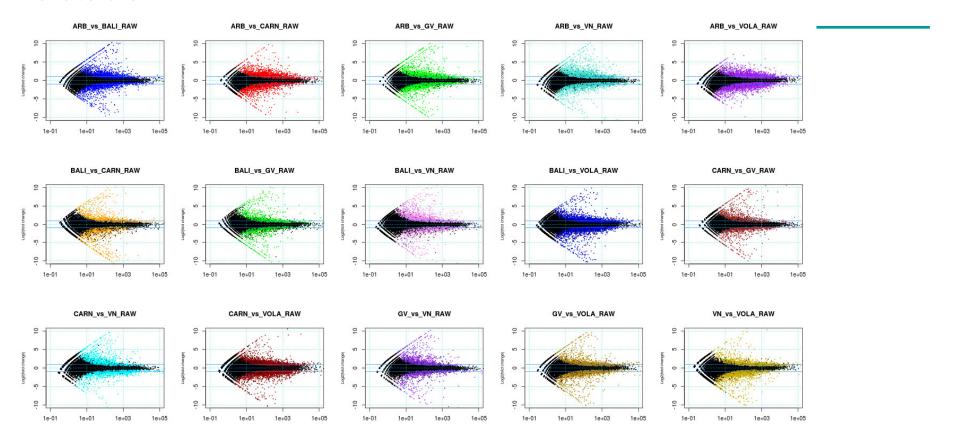
Risultati raggiunti (1)

Attività 1: Sequenziamento di nuova generazione per scoprire la base della qualità e di altri caratteri in sei varietà di riso italiane (collaborazione PTP)

Varietà	Origi ne	Altezza pianta(c m)	UE Classific azione	Conten uto amilosi o
Arborio	ITA	101,1	Lungo A	17,8
Gigante Vercelli	ITA	105,5	Lungo A	23,05
Vialone nano	ITA	107,2	Medio	22,8
Volano	ITA	103,6	Lungo A	17,4
Balilla	ITA	88,0	Tondo	18,53
Carnaroli	ITA	114,0	Lungo A	22,1

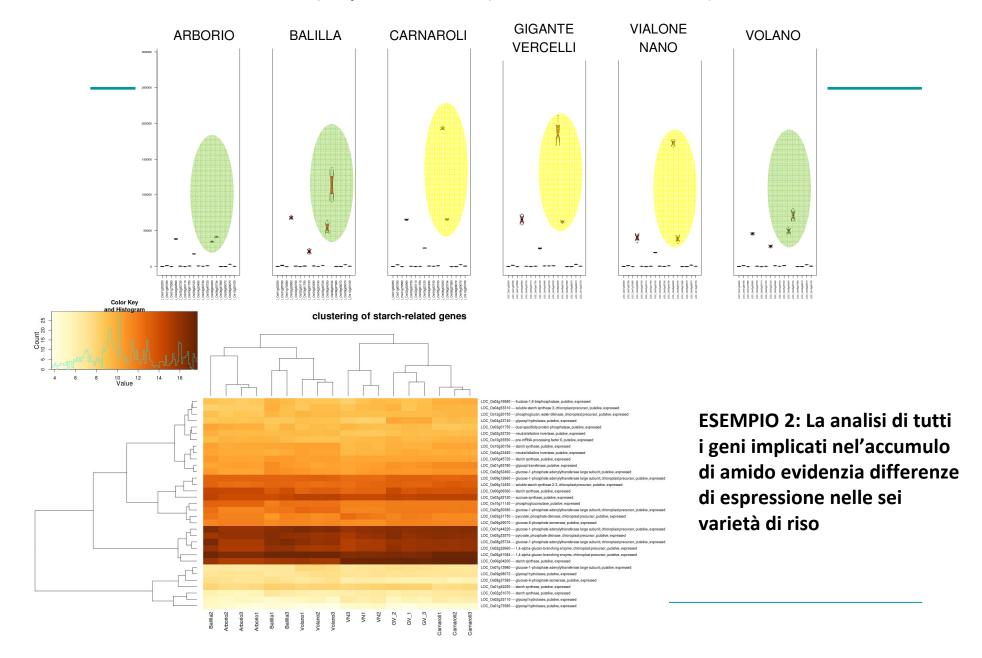
13-25 milioni di sequenze ottenute

14 giorni dopo fioritura tarda lattea-inizio cerosa

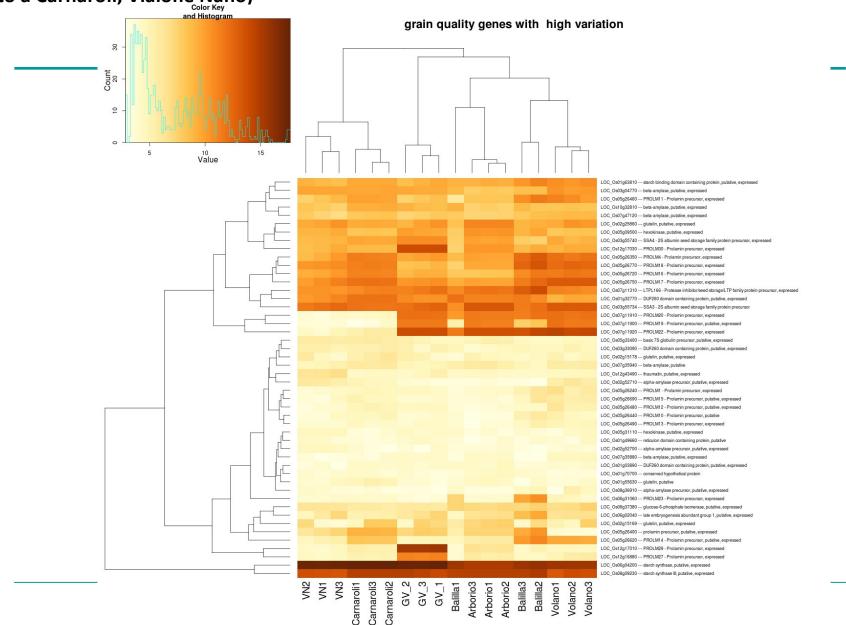

Estrazione

RNA e
preparazione
librerie

Decorticazione dei semi

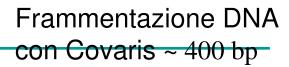

Risultati raggiunti (2)

Migliaia di geni differenzialmente espressi sono stati identificati tramite confronto bilaterale



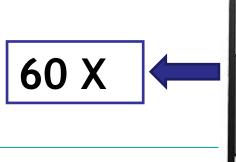
Scopo principale: analisi della espressione di geni della qualità, come contenuto di amilosio, contenuto proteico etc

ESEMPIO 1: Il gene Granule Bound Starch Synthase I è più espresso nelle varietà ad alto amilosio (Gigante Vercelli, Carnaroli e Vialone nano) rispetto alle altre (Volano, Balilla e Arborio)


ESEMPIO 3: Analisi dei geni delle proteine di riserva ha evidenziato notevole variazioni nella espressione (es geni per la sintesi delle prolamine sono 500 volte più espressi in Gigante Vercelli, Arborio, Volano rispetto a Carnaroli, Vialone Nano)

Risultati raggiunti (3)

Estrazione DNA dalla foglie



Risequenziamento del genoma (collaborazione PTP)

Preparazione librerie

Risultati raggiunti (4)

Attività 4: ottenimento di popolazioni sperimentali di tipo RIL segreganti per diversi caratteri

Le popolazioni RILs sviluppate sono in F7:

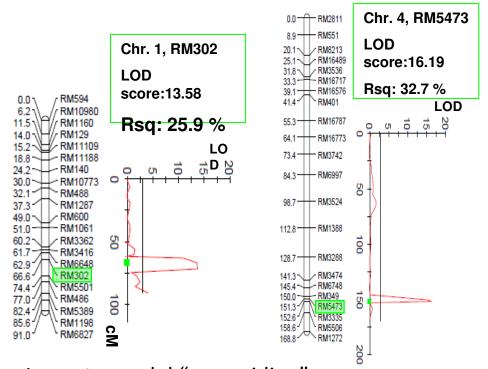
Venere x Vialone Nano: 172 linee

Asia x Maratelli: 140 linee

Augusto x Vialone Nano: 180 linee

Gigante Vercelli x Maratelli: 180 linee

Attività 5: Introgressione di geni di resistenza al brusone tramite MAS


Linee F4 omozigoti per geni Pi identificate

CROSS	BLAST RESISTANCE	NUMBER OF PLANTS	HOMOZYGOUS RESISTANT	
	GENE	TESTED WITH MAS	PLANTS IDENTIFIED	
Fukunishiki x Baldo	Piz	49	11	
Fukunishiki x Carnaroli	Piz	12	3	
RIL260 x Carnaroli	Pi5	32	15	
RIL260 x Arborio	Pi5	33	8	
RIL260 x Volano	Pi5	14	8	
RIL260 x Arborio	Pi5	8	0	
C101LAC x Carnaroli	Pi1	12	0	
Jefferson x Creso	Piz	19	3	
Kanto51 x Balilla	Pik	26	4	
Saber x Eurosis	Pib	26	5	
TOTAL		231	57	

Risultati raggiunti (5)

Condotti 23 incroci per piramidare i geni di resistenza; in Tabella sono riportati a titolo esemplificativo 5 incroci condotti per accumulare i geni Piz e Pi5

Pedigree line F4		Pedigree line F4	Pyramided genes
Fukunishiki x Baldo	х	RIL260 x Arborio	Piz + Pi5
Fukunishiki x Baldo	х	RIL260 x Carnaroli	Piz + Pi5
RIL260 x Volano	X	Fukunishiki x Baldo	Pi5 + Piz
Fukunishiki x Carnaroli	Х	RIL260 x Carnaroli	Pi5 + Piz
Fukunishiki x Baldo	x	RIL260 x Carnaroli	Pi5 + Piz

Importanza del "pyramiding" per una resistenza efficace e durevole: l'esempio di Gigante Vercelli Eseguiti 63 nuovi incroci per la introduzione di geni Pi nelle varietà Italiane suscettibili; alcuni esempi

Crosses	Resistance genes
Saber x Carnaroli	Pib
Saber x Vialone nano	Pib
Saber x Baldo	Pib
Saber x Onice	Pib
Katy x Carnaroli	Pita2
Katy x Vialone nano	Pita2
Katy x Baldo	Pita2
Katy x Onice	Pita2
Kanto51 x Carnaroli	Pik
Kanto51 x Vialone nano	Pik
Kanto51 x Baldo	Pik
Kanto51 x Onice	Pik
Kusabue x Carnaroli	Pik
Kusabue x Vialone nano	Pik
Kusabue x Baldo	Pik
Kusabue x Onice	Pik
Bala x Carnaroli	Pi33
Bala x Vialone nano	Pi33
Bala x Baldo	Pi33
Bala x Onice	Pi33

Attività di divulgazione e/o didattica 2012

Scopi della sperimentazione e risultati preliminari sono stati presentati a:

Open Day CRA-RIS, 13 settembre 2012

Giornata dell'Innovazione, 8 marzo 2013

Impatto dell'attività di ricerca effettuata

Per la prima volta sono stati studiati a livello di sequenza di RNA e di DNA caratteri di rilevanza agronomica presenti nelle varietà di riso Italiane

Sono state realizzate popolazioni segreganti sperimentali per lo studio genetico di caratteri presenti in varietà di riso Italiane

Sono stati introgressi e piramidati geni di resistenza al brusone in background di varietà di riso Italiane

Attività prevista per il 2013 (1/2)

Attività 1, 2 e 3: completamento dei sequenziamenti del DNA delle sei varietà di riso; analisi bioinformatiche dei risultati del sequenziamento del RNA e del DNA per la identificazione delle basi genetiche e molecolari delle caratteristiche qualitative e agronomiche delle sei varietà (resistenza a malattie, taglia della pianta, precocità, dimensioni e biometrie del granello, contenuto di amilosio etc);

Attività 4: completamento delle generazioni di SSD, incremento del pool di semi disponibile per analisi fenotipiche;

Attività 5: sarà condotta MAS per selezionare piante omozigoti con pyramiding di due geni di resistenza; verranno allevate le piante F1 prodotte da nuovi incroci per introdurre geni Pi e la selezione mediante MAS sarà effettuata sulle piante F2 nel 2014